A Study of the Dynamic Difference Approximations on Time Scales

نویسندگان

  • Qin Sheng
  • Anzhong Wang
چکیده

Various dynamic equations have been used extensively in modeling many important natural phenomena, such as the population or epidemic growth with unpredictable jump sizes, motion control of impulsive robot movements, and prediction of irregular option markets. Since dynamic derivatives are basic building blocks of most dynamic equations, it has been crucial to approximate the derivatives to yield computable discrete equations for numerical solutions. This motivates our investigations. This paper proposes a class of feasible approximation methods for the first and second order noncrossed dynamic derivatives. Applicable local error estimates are derived and discussed. Numerical experiments are given to illustrate our results. AMS Subject Classifications: 34A45, 39A13, 74H15, 74S20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Some new variants of interval-valued Gronwall type inequalities on time scales

By using an efficient partial order and concept of gH-differentiability oninterval-valued functions, we investigate some new variants of Gronwall typeinequalities on time scales, which provide explicit bounds on unknownfunctions. Our results not only unify and extend some continuousinequalities, but also in discrete case, all are new.

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009